Fluctuation in electrolyte solutions: the self energy.
نویسنده
چکیده
We address the issue of the self energy of the mobile ions in electrolyte solutions within a general Gaussian renormalized fluctuation theory using a field-theoretic approach. We introduce the Born radii of the ions in the form of a charge distribution allowing for different Born radii between the cations and anions. The model thus automatically yields a theory free of divergences and accounts for the solvation of the ions at the level of continuous dielectric media. In an inhomogeneous dielectric medium, the self energy is in general position dependent and differences in the self energy between cations and anions can give rise to local charge separation in a macroscopically neutral system. Treating the Born radius a as a smallness parameter, we show that the self energy can be split into an O(a(-1)) nonuniversal contribution and an O(a0) universal contribution that depends only on the ion concentration, valency, and the spatially varying dielectric constant. For a weakly inhomogeneous dielectric medium, the nonuniversal part of the self energy is shown to have the form of the Born energy with the local dielectric constant. This self energy is incorporated into the Poisson-Boltzmann equation as a simple means of including this local fluctuation effect in a mean-field theory. We illustrate the phenomenon of charge separation by considering cations and anions of difference sizes and valencies in a periodic dielectric medium.
منابع مشابه
Modeling the Thermodynamic Properties of Solutions Containing Polymer and Electrolyte with New Local Composition Model
A new theory model based on the local composition concept (TNRF-modified NRTL (TNRF-mNRTL) model) was developed to express the short-range contribution of the excess Gibbs energy for the solutions containing polymer and electrolyte. An equation represented the activity coefficient of solvent was derived from the proposed excess Gibbs energy equation. The short-range contribution of interaction ...
متن کاملElectrostatic correlations and the polyelectrolyte self energy.
We address the effects of chain connectivity on electrostaticfluctuations in polyelectrolyte solutions using a field-theoretic, renormalizedGaussian fluctuation (RGF) theory. As in simple electrolyte solutions [Z.-G. Wang,Phys. Rev. E 81, 021501 (2010)], the RGF provides a unified theory forelectrostatic fluctuations, accounting for both dielectric and charge correlationeffects in terms of the ...
متن کاملInvestigating the Solubility of CO2 in the Solution of Aqueous K2CO3 Using Wilson-NRF Model
Hot potassium carbonate (PC) solution in comparison with amine solution had a decreased energy of regeneration and a high chemical solubility of . To present vapor and liquid equation (VLE) of this system and predict solubility, the ion specific non-electrolyte Wilson-NRF local composition model (isNWN) was used in this study; the framework of this model was molecular. Therefore, it was suitab...
متن کاملModeling the Transport and Volumetric Properties of Solutions Containing Polymer and Electrolyte with New Model
A new theoretical model based on the local composition concept (TNRF-mNRTL model) was proposed to express the short-range contribution of the excess Gibbs energy for the solutions containing polymer and electrolyte. This contribution of interaction along with the long-range contribution of interaction (Pitzer-Debye-Hückel equation), configurational entropy of mixing (Flory-Huggins relation)...
متن کاملPrediction of Hydrate Formation for the Systems Containing Single and Mixed Electrolyte Solutions
In this work the effect of electrolytes on hydrate formation was investigated. To do so, a new model was used in predicting the hydrate formation conditions in presence of both single and mixed electrolyte solutions. The new model is based on the van der Waals - Platteeuw hydrate equation of state. In order to evaluate the values for the activity of water in electrolyte solutions t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 81 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2010